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Abstract
Hsueh, Lin and Chen (HLC) (2007 J. Phys.: Condens. Matter 19 266007) present a graph
theory-based derivation of a stable method for determining the energy minibands of
superlattices with an arbitrary number of layers per unit cell. Here it is shown that the above
result is immediately derivable from the transfer matrix formalism by factoring out a single
cosine function per layer.

HLC [1] deal with one-dimensional superlattices with N layers
per unit cell. In their work they cite several papers on the
subject and observe that most methods for calculating the band
dispersions, such as the transfer matrix formalism [2, 3], suffer
from numerical instabilities. Here it is shown that their results
follow immediately from the transfer formalism. To show this,
take the transfer matrix for the j th layer [4]

Tj(d j) =
(

cos k j d j
i sin k j d j

α j

iα j sin k j d j cos k j d j

)

= 1

e j

(
1 it j

α j

iα j t j 1

)
≡ 1

e j
M j

(
d j

)
, (1)

where α j = m∗
j/k j , t j = tan k j d j and e j = sec k j d j ,

and a single cosine was factored out to produce the 2 × 2
matrix M j (d j). For evanescent waves, k j is imaginary, so that
the sine and cosine functions turn into hyperbolic sines and
cosines, functions that grow exponentially with layer width,
hence the source of the numerical instabilities. HLC adopt the
author’s approach [4, 5] in seeking a formalism that employs
tangents, since for evanescent solutions the hyperbolic tangents
are bounded by ±1.

Rather than using HLC’s topological arguments to derive
an eigenvalue condition with complicated recursion relations,
it is much more transparent to use the eigenvalue condition
for a periodic N-layer superlattice based on the transfer matrix

formalism [4], i.e.∥∥∥∥T1(d1)T2(d2) · · · TN (dN )+TN (−dN ) · · · T2(−d2)T1(−d1)

2

−
(

cos K L 0
0 cos K L

)∥∥∥∥ = 0, (2)

which in terms of the M matrices is∥∥∥∥M1(d1)M2(d2) · · · MN (dN)+MN (−dN) · · · M2(−d2)M1(−d1)

2(e1e2 · · · eN )

−
(

cos K L 0
0 cos K L

)∥∥∥∥ = 0. (3)

In view of the definition of the transfer matrix and its
tangent form (1), the fact that the eigenvalue condition (3) can
be written completely with tangents and secants is immediately
obvious. Moreover, equation (3) provides a transparent
algorithm (multiplication of 2×2 transfer matrices) for finding
such an eigenvalue condition for any number of layers.

As an example, for two layers, from (3),∥∥∥∥ M1 (d1) M2 (d2) + M2 (−d2) M1 (−d1)

2e1e2

−
(

cos K L 0
0 cos K L

)∥∥∥∥ = 0, (4)
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where, from (1),

M1 (d1) M2 (d2) =
(

1 − α2
α1

t1t2 i
(

t1
α1

+ t2
α2

)
i (α1t1 + α2t2) 1 − α1

α2
t1t2

)

≡
(

A2 iB2

iC2 D2

)
, (5)

where A2 = 1 − α2
α1

t1t2, B2 = t1
α1

+ t2
α2

, C2 = α1t1 + α2t2, and
D2 = 1 − α1

α2
t1t2; at the same time,

M2 (−d2) M1 (−d1) =
(

D2 −iB2

−iC2 A2

)
. (6)

Using (5) and (6), equation (4) becomes A2 + D2 −
2e1e2 cos K L = 0, or

1 − 1

2

(
α2

α1
+ α1

α2

)
t1t2 − e1e2 cos K L = 0, (7)

which is equation (17) of HLC.
For an arbitrary number of layers, one can proceed by

induction. Assume that the forms (4) and (5) holds for N − 1
layers, i.e. that

M1(d1)M2(d2) · · · MN−1(dN−1) =
( AN−1 iBN−1

iCN−1 DN−1

)
, (8)

MN (−dN ) · · · M2(−d2)M1(−d1) =
( DN−1 −iBN−1

−iCN−1 AN−1

)
,

(9)
and then show that these forms hold for N as well. First, for N
layers, the product [M1(d1)M2(d2) · · · MN−1(dN−1)]MN (dN )

is given by(
AN−1 iBN−1

iCN−1 DN−1

) (
1 itN

αN

iαN tN 1

)

=
(

AN−1 − BN−1αN tN i
(
BN−1 + AN−1

tN
αN

)
i (CN−1 + DN−1αN tN ) DN−1 − CN−1

tN
αN

)

=
( AN iBN

iCN DN

)
, (10)

where
AN = AN−1 − BN−1αN tN , (11a)

BN = BN−1 + AN−1
tN

αN
, (11b)

CN = CN−1 + DN−1αN tN , (11c)

DN = DN−1 − CN−1
tN

αN
; (11d)

then the product MN (−dN )[MN−1(−dN−1) · · · M2(−d2)M1

(−d1)] is found to be(
1 − itN

αN−iαN tN 1

) (
DN−1 −iBN−1

−iCN−1 AN−1

)

=
(

DN−1 − CN−1
tN
αN

−i
(
BN−1 + AN−1

tN
αN

)
−i (CN−1 + DN−1αN tN ) AN−1 − BN−1αN tN

)

(12)

which indeed is equal to (
DN −iBN

−iCN AN
). Having proved

the theorem, equations (11a)–(11d) become the recursion
relations that replace the complex formulae (8)–(12) of HLC.
Altogether, for any N , from equation (3)

AN + DN

2
− (e1e2 · · · eN ) cos K L = 0, (13)

where, through equations (11a)–(11d), AN and BN are
expressed in terms of tangents only and are simpler to code
than the equations in HLC. Equation (13) has the form of
equation (14) of HLC and involves only tangents and secants.
Tangent-only forms can be found in the author’s work [4, 5].

In conclusion, the tangent and secant form for the N-layer
Kronig–Penney model is immediately and simply derivable
from the transfer matrix formalism.
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